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We consider the centrifugal separation of an initially homogeneous mixture in an 
asymmetric geometry. The mixture is shown to acquire a uniform and negative 
relative vorticity, manifested as a retrograde circulation, as the heavier phase is 
forced outwards by the centrifugal acceleration. The perturbation theory formulated 
accounts for inertial effects and endwall boundary layers as well as slight deviations 
of endwall shape from a level plane. The time-dependent separation process is 
described and the flow field, including kinematic shocks, is calculated in some cases 
of technological interest. 

1. Introduction 
We consider centrifugal batch separation of a two-phase mixture which consists of 

a dispersed phase of fluid droplets or solid particles within a continuous Newtonian 
liquid. This problem has been the subject of several recent studies, all of which use 
variations of the same basic mathematical model and place emphasis on the effects 
of geometrical modifications of the container and of different parameter regimes. 

Greenspan (1983) considered an infinite circular cylinder and presented an exact 
similarity solution to the full nonlinear two-phase flow equations. It was found that 
the mixture, which initially rotated with the cylinder, is set in a retrograde rotation 
relative to the cylinder as separation occurs. This is caused by the outward radial 
mass flux during separation which is accompanied by a decreasing angular velocity 
in the mixture in order to conserve angular momentum. Except for the drag between 
the phases, viscous phenomena, such as endwall effects, were neglected in the 
analysis. 

The effects of the Ekman layers at the endwalls were studied by Ungarish (1986) 
under the assumption that the Rossby number and the particle Taylor number are 
small. The retrograde rotation of the mixture is then counteracted by the spin-up 
mechanism due to the secondary flow set up by the Ekman-layer suction. If the spin- 
up timescale is much shorter than that for separation, the retrograde rotation of the 
mixture is strongly damped but the interior radial velocities of the phases are quite 
insensitive to the influence of the boundary layers. 

To investigate the possibility of an enhanced settling rate similar to the Boycott 
effect in gravitational settling, Greenspan & Ungarish (1985a, b)  considered an 
axisymmetric container with inclined endwalls. It was shown that an enhanced mass 
flux, which ordinarily appears owing to buoyancy forces in the clear-fluid layer 
adjacent to an inclined wall, is in a rotating container blocked by the Coriolis force 
which dominates the interior force balance. Another effect of the Coriolis force in an 
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axisymmetric container is that the retrograde rotation of the mixture increases with 
increasing values of the relative density difference between the phases and thereby 
reduces the effective centrifugal force on the heavier phase. To decrease the negative 
effects of the Coriolis force, a disk stack with small gap thickness is used in industrial 
design (Amberg et al. 1986) ; alternatively, motion around the axis of rotation can be 
prevented by inserting a radial wall in the cylinder. Greenspan & Ungarish ( 1 9 8 5 ~ )  
calculated the enhanced settling rate due to  such a barrier based on simplifying 
assumptions about the viscous boundary layers a t  inclined endwalls. A more careful 
investigation of the structure and transport mechanisms in the boundary layers was 
made by Amberg & Greenspan (1986). 

An enhanced settling rate can be achieved even without inclined endwalls. At 
relatively large particle Taylor numbers, the Coriolis force on the particles due to the 
relative motion between the phases is significant, and according to Greenspan (1983) 
a sedimenting particle then has a substantial component of velocity in the azimuthal 
direction. As demonstrated by Schaflinger, Koppl & Filipzak (1986), who considered 
an infinitely long cylinder with radial walls, the result in this case is an enhanced 
settling rate caused by the production of clear fluid adjacent to each sectorial barrier. 
They showed, theoretically and experimentally, that for moderately large values of 
the particle Taylor number the clear fluid produced in this way can significantly 
decrease the time for total separation. (This theoretical analysis, however, assumes 
the Rossby number to be zero and the force balance to be purely hydrostatic.) 

The aim here is a better understanding of the total flow in a separating mixture 
within a finite, non-axisymmetric cylinder. The theoretical formulation and 
analytical development presented can account in a systematic way for the effects of 
endwall boundary layers and geometry, inertial and geostrophic dynamics, vorticity 
production from density stratification, and arbitrary initial conditions. 

2. Formulation 
Separation is assumed to take place in a rotating sectioned cylinder of height H * ,  

inner radius r:, outer radius r,* and sector angle 0. A cylindrical coordinate system 
is used that rotates with the container at angular velocity O* around the z-axis (see 
figure 1 ) .  The mixture consists of a continuous liquid phase and a homogeneous 
dispersed phase of spherical particles all with the same radius a*. The ‘mixture’ (or 
‘diffusion ’) model for two-phase flow is used (see Ishii 1975) where the mass-averaged 
velocity of the mixture is denoted by q* = (q:, q:, q:) and the corresponding volume 
flux by j* = (j,*,jt,j,*). Variables of the continuous and the dispersed phases are 
denoted by subscripts C, D as for example, densities pg and plT, and the viscosity of 
the liquid ug. In terms of the particle volume fraction a, the mixture density is 

p* = ap;S+(l-a)p,*;  (2.1) 

the velocity difference between the phases is denoted by 

Non-dimensional variables are defined as follows : 
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FIGURE 1. Geometry of the container: (a)  side view; ( b )  top view. 

where P* is the averaged mixture pressure. The relative density difference 8 and 
particle Taylor number f3 are dimensionless parameters defined by 

The Ekman number is 

and a suitable Rossby number Ro will be specified later. 
For reference, some relations between velocities, volume fluxes and the relative 

velocity are 

( 2 . 3 ~ )  

j ,  = aj+- lel P a(1 -a)q,, (2.3b) 
Ro 

( 2 . 3 ~ )  

The mixture theory for two-phase flow consists of two mass conservation 
equations for the incompressible constituents : 

V - j  = 0, (2.4) 

(2.5) 
aa 

1el/3-+RoV.jD = 0, 
at 

and a single momentum equation for the velocity field of the bulk 

€a + ( 1  + E E )  2k x = - VP-- k x (k  x I) 
Ro 

These are supplemented by a constitutive law for the relative velocity 

6.2 

1 a4 
181 /I ROT+ Ro2q.Vq+ RO 2k x q+ k x (k  X I) = -qR-B(a) k x 4% (2.7) 
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where E s = -  l-a 2p( 1 + E )  A A(a)  = - B(a)  = 
D(a) ’ l+Ea ’ 181 ’ 

and an empirical formula for the effective viscosity, as for example 

D(a)  = (1 - a /aM)-2 .5a~  (2.9) 

(with a M  = 0.66 for computational purposes). The right-hand side of (2.7) consists of 
the Stokesian drag and the Coriolis force on a particle due to the relative velocity 
between the phases; the left-hand side models the centrifugal force on a particle as 
modified by inertial effects due to the motion of the mixture. In (2.6) and (2.7) 
gravity is neglected owing to the rapid rotation of the cylinder. 

For the most part the mixture is assumed to be initially homogeneous and in rigid 
rotation : 

a(t = 0) = ai, q(t = 0) = 0. (2.10) 

No initial condition can be prescribed on the relative velocity q, which is assumed 
to be quasi-steady. If a time derivative of q, is included in the constitutive law (2.7) 
(see Greenspan 1988) the initial-value problem for q is well posed, in which case the 
relative velocity attains its quasi-steady value on a timescale much shorter than that 
used here. 

With conditions of no slip imposed on the walls, (2.4), (2.5) and (2.6) together with 
(2.7) and (2.10) constitute a well set initial- and boundary-value problem for the 
dependent variables q and a. This problem will be studied under the assumptions 
that the Ekman number E and the relative density difference E are small but non- 
zero. The particle Taylor number p, which can be interpreted as the square of the 
ratio of the particle radius and the Ekman-layer thickness, is often small too in 
applications but is here treated as an order-one quantity in a formal perturbation 
procedure. However, it is clear that if p is too large the mixture model breaks down 
in the Ekman layers. Also, it should be pointed out that for large ,8 the constitutive 
law (2.7) must be modified owing to the change in character of the local flow field 
around a particle. Since E and E are small, the interior flow of the mixture is mainly 
inviscid and linear boundary-layer theory can be used to obtain boundary conditions 
for the interior flow (Greenspan 1968). It follows that a t  the horizontal top and 
bottom plates 

R 

q2(z = 0) = iEi[D(c~)]i (2.11a) 

(2.11b) 

where w = k. (V x q) ,  while a t  the vertical walls 

j-n = O(Ei).  (2.12) 

These formulas also assume the volume fraction to be constant in the Ekman layers 
(Ungarish 1986). 

The problem as formulated generally leads to solutions that involve kinematic 
shocks to separate regions of clarified fluid, suspension and sediment. If the radial 
position of a shock is assumed to be given by r = R(8, t ) ,  then the shock conditions 
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for the conservation of momentum, mass and particle volume and the no-slip 
conditions for a viscous fluid are respectively 

( 2 . 1 3 ~ )  

(2.13 b) 

(2.13 c)  

(2.13d) 

(2.13 e) 

> 1 aR 
nR = er-- - (2.13f) R ae ee9 

where 

and T is the viscous stress tensor. Here we will deal only with the interface separating 
the clear fluid from the suspension and all effects of accumulated sediment on the 
container walls will be neglected in the analysis. Therefore the analysis is valid only 
for small concentrations when the sediment layer is thin. With e > 0, a- = 0 and 
a+ = a, it follows that 

-['I? nR'nR T'nR]! = CP2@d( 1 -a) (q+R.nR)2 ; ( 2 . 1 4 ~ )  

(2.14 b)  

( 2 . 1 4 ~ )  

-q3(1-aa)q:,.n,[q.k]+_ = E[k.T.n,]'; (2.14d) 

- ~ / ( l  --a)q;t.n,[q.(kxn,)]? = E [ ( k x n R ) - T - n R ] _ f  
a(1-a) 

1 +ea 7 ep2( 1 + e) - q&- (k  x nR) q&.nR ; (2.14e) 

[ q - k ] ?  = 0;  [ q - ( k  x nR) ] f  = 0. (2.14f,g) 

For an inviscid fluid the no-slip conditions are omitted and with E = 0 the second 

[ q . k ] +  = 0;  ( 2 . 1 5 ~ )  

term in (2.14a) is neglected and (2.14d-g) reduce to 

(2.15b) 

Using the definition (2.2) and the relation (2.3a), it follows from ( 2 . 1 5 ~ )  and (2.15b) 
that the tangential components of the clear-fluid velocity are continuous across the 
interface. Thus, (2.15a, b)  are consequences of the inertia of the clear fluid that passes 
from the suspension into the clear-fluid region across the interface. 
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3. The vorticity equation 

process. The curl of the inviscid form of (2 .6)  yields 
The vorticity of the mass-averaged velocity field is used in the analysis of the 

Ro q -  Vq + 2 ~ V a  x (k x q )  + 2( 1 + sa) V - q  - 2( 1 + sa) 1 a2 

where w = k. ( V  x q) .  

By examining this equation an appropriate Rossby number can be chosen to scale 
the velocity field. It is obvious that the vorticity generated depends in part on the 
stratification of the mixture, that is on baroclinic processes. If there is no 
stratifjcation in the vertical direction, the x-component of the velocity can be 
expected to be small, of magnitude given by the Ekman-layer suction, i.e. 
proportional to Ei. Large buoyant forces due to stratification in the horizontal plane 
must then be balanced by inertia rather than by vortex stretching, which, by 
balancing the second term on the left-hand side with the first term on the right-hand 
side, implies Ro = O((s1;). However, even if the mixture happens to  be homogeneous 
in space, vorticity is still generated because of the divergent velocity field due to the 
sedimenting particles. Since from (2.4) and (2 .3) ,  we have that 

the balance of the divergence by the inertia term in (3.1) implies Ro = O(ls1). This 
Rossby number will also apply to the situation in which the stratification is non-zero 
in the radial direction but at most of order s in the azimuthal direction. 

The effect of the strong coupling between vorticity and stratification in the 
mixture on the volume fraction of particles requires discussion. Equation (2.5) can 
be written 

qR)}.Va = -a (1  v'qRla  (3 .3)  

where la means that a should be held constant when differentiating. The relative 
velocity is obtained from the constitutive law (2.7) 

A(a)  [r(e,+B(a) e, x k )  -2Rok  x q-2Ro B(a) ( k  x q )  x k], (3 .4)  

where second-order terms in Ro and s have been neglected. To lowest order in Ro the 
components of the relative velocity are thus explicitly independent of the azimuthal 
coordinate. With a held constant the divergence of (3 .4)  gives 

qR = 1 +B(a)2 

2A(a) (1 + R o o ) ,  
1 + B(a)' v ' q R l a  = (3 .5)  
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to this order of accuracy. For future use, note that 

Now, according to (3.3) concentration waves are convected by the mixture 
velocity, which in turn is determined by the generated vorticity field. For example, 
a stratification that is initially in the radial direction only cannot in general remain 
so in a non-axisymmetric container because the wave velocity components of (3.3) 
depend on the azimuthal coordinate even if the relative velocity components do not. 
In  other words, a line of equal concentration will not propagate with the same radial 
velocity for all values of the azimuthal angle and therefore cannot remain circular. 
If there is not any initial stratification, as assumed in the formulation of the problem 
in the previous section, the convection of concentration waves will be of no 
importance if, on all characteristic paths, the Concentration is the same. In  an 
axisymmetric container i t  has been shown by Greenspan (1983) that this is actually 
the case even for finite Rossby numbers and the concentration then remains 
homogeneous and a function of time alone. Here, in the case of a non-axisymmetric 
cylinder, the volume fraction will be shown to be independent of space coordinates 
to first order in the Rossby number. The generated vorticity is then independent of 
the space coordinates too but only to lowest order in the Rossby number. Of course 
kinematic shocks may appear in the fluid to separate regions of clear fluid, suspension 
and sediment. These shocks have no influence on the volume fraction of particles in 
the suspension if the concentration is so small that  no expansion waves propagate out 
from the sediment layer (Kynch 1952). 

In  the problem formulated in the previous section the concentration will remain 
nearly uniform. A suitable Rossby number is then 

Ro = !el, 
or IeIa, if ai is also small. 

(3.7) 

4. Analysis 

I E ~  = c E ~  = Ro, 14.1) 
where c is an order-one quantity. It is natural to seek a solution in the form of a power 
series expansion in the small parameter Ei in which case any dependent variable 
y ( r ,  t )  is represented as 

(4.2) 

where the quantities yo,1 are assumed to be of order unity. The substitution of the 
power series expansions into the governing equations yields to zeroth order : 

Let 

y(r, t )  = yo(r ,  t )  +E+yl(r, t )  + O ( E ) ,  

J" = qo ; 

v.qo = 0, 

duo A0 
dt 1 + (B"2' 
- = - s2a0( 1 - aO) 

2k x qo = -VPo+aOre,; (4.6) 

the vorticity equation gives 
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Ao and Bo are the zeroth-order expansions of the functions defined in (2.8) : 
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A0 = A(aO), BO = 2pA(ao). (4.8) 

The boundary and initial conditions imply 

40 .”  = 0 

q: = 0 at  the vertical walls, 

(4.9) 

(4.10) 

at the top and bottom plates, and 

aO(t = 0) = ai, q O ( t  = 0) = 0. (4.1 1) 

The concentration a*, a function of time alone, is easily obtained by integrating (4.5). 
The velocity field to zeroth order is then geostrophic and can be written as 

where 

(4.12) 

(4.13) 

which becomes a primary dependent variable. 

vorticity equation : 

1 

The geostrophic velocity is specified a t  the next order in the expansion of the 

-_ = ””1- - qo,Vwo + s2a0( 1 -ao) V -qk + 2pa0( 1 -ao) V .&(k.V x 4;). (4.14) 
cp aZ at p 

The right-hand side is independent of the vertical coordinate and the integration of 
this equation, subject to the equivalent endwall conditions 

qk(2 = 0) = [D(.”]”0/2, qZ(z = H )  = -[D(aO)]LJO/2, (4.15) 

implies 

where, 

Here, 

(4.17) 

(4.18) 

is the ratio of the separation to the spin-up timescales. The right-hand side of (4.16) 
has no spatial dependence, and since 

wO(t = 0) = 0, (4.19) 

the vorticity to zeroth order is a function only of time. (This conclusion is more 
generally valid, Greenspan 1988.) Numerical solutions of (4.16), using (4.5), are 
shown in figure 2. In  figure 2(a) i t  is seen how the generated vorticity is damped as 
an effect of the spin-up mechanism for non-zero A. For very large values of h the 
process is quasi-steady. By neglecting the time derivative in (4.16), it follows that for 
large A 

I 

1 A0 [D(ao)]-i (1 - 
h 1 + (B0)2 

wo = --2a0(1-a0) (4.20) 
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-0.5 

Id0 - -1.0 
a1 

- 1.5 

I 
0.5 1.0 1.5 2.0 2.5 

t 

p = 0  

0.5 1.0 1.5 2.0 2.5 
t 

FIQURE 2. (a) Vorticity versus time for different values of A : a, = 0.1, p = 0.1. (b )  Vorticity versus 
time for different values of p :  a, = 0.1, A = 1.0. 

Figure 2 ( b )  shows that increasing the particle Taylor number p decreases the 
magnitude of the generated vorticity. This is caused by the Coriolis force on the 
particles which results in two different physical effects : the magnitude of the relative 
velocity decreases with increasing values of p in comparison with a purely centrifugal 
force field ; there is a radial dispersal of momentum due to the diffusion stress tensor 
acting on the sedimenting particles. The latter effect is modelled by the last term in 
the right-hand side of (3.1). 
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a - 0.5 
a1 

0.5 1.0 1.5 2.0 2.5 
t 

0.5 1.0 1.5 2.0 2.5 
t 

FIGURE 3. (a )  a/a, versus time for different values of p :  ai = 0.1, A = 0.1, E = 0.2. ( b )  a/a, versus 
time for different values of : ai = 0.3, A = 0.1, /3 = 0.1. 

With wo given by (4.16), a first-order correction to the concentration can be 
obtained from (3.3) : 

_ -  - -8241 -a) A(a)  (1 + l€ lwo( t ) ) .  
da 
at 1 + B ( o ~ ) ~  

(4.21) 

Since wo is independent of the space coordinates, the concentration is a function of 
time also to first order. Rather than inserting the power series expansion for a,  (4.21) 
is more easily solved as i t  stands to  obtain 

a = a"t) +E&(t) + O(E) .  (4.22) 
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Solutions to (4.21) are shown in figure 3. The effective Rossby number for small a is 
ailel rather than 161 so the result of increasing [el is rather moderate for dilute 
suspensions (see figure 3 b)  .-f 

The first-order correction to the vorticity leads to  an equation that involves 
a2(r , t ) .  This term, though, generally depends on the space coordinates because of 
nonlinear inertia1 effects in the equation for the relative velocity. Therefore the 
perturbation series imply a solution of the form 

a = a"t) +a'( t )Ei+a2(r ,  t)E+O(EO),I 

w = w"t)+wl(r,t)E:+O(E). J (4.23) 

5. The flow field 

curl of this equation yields 

where wo is given by the solution of (4.16). Since wo, a function of time only, can be 
obtained irrespective of the velocity field, $' can be calculated from (5.1) as soon as 
the boundary conditions and the geometry of the suspension region are specified. 
However, the vorticity is generally spatially dependent in the region of clarified fluid 
and the convection of vorticity then requires solution of the coupled system of 
equations (5.1) (4.16). 

Consider first the simple case of a container that has no inner cylindrical boundary, 
figure 1, so that no clear fluid is produced by heavy particles moving away from an 
interior surface. The angular component of the relative velocity indicates that clear 
fluid may indeed appear a t  the radial walls, but this is not considered a t  the moment. 
It is assumed then that for ri = 0 and s = 1, the suspension occupies the whole of the 
container for all times and no interface between clear fluid and mixture forms. 
Equation (5.1) must be solved subject to the boundary condition (4.9), which 
implies 

According to (4.12), $O is a stream function for the zeroth-order flow field, and the 

V2$0 = 200, (5.1) 

$0 = 0, (5.2) 

a t  the vertical walls. This is easily done because the right-hand side of (5.1) is 
independent of space coordinates in the whole region 8. Let 

$ ( r ,  8) = $O/2w0, 
so that from (5.1) and (5.2) 

(5.3) 

V 2 + =  1 in 8, $ = 0  on G3. (5.4) 

This can be solved by using a Green function (see Appendix A) for the cases of 
8 = in and 8 = n: ; streamlines are shown in figure 4. With qo determined, the velocity 
of the particles is obtained from ( 2 . 3 ~ )  and (3.4) : 

r[e, +Boer x k]. 
A0 

4; = 4O+P(1--0I0) 1 + ( B 0 ) 2  (5.5) 

t It is interesting to note that in contrast to the 'mixture model' used here, the 'two-fluid' 
model (see Ishii 1975) hasrbeen applied by Ungarish (1988) to obtain similar results for non-zero 
Rossby numbers in a circular cylinder using numerical methods. 
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FIGURE 4. Streamlines for the mixture velocity given by the solution to (5.4) for (a) 8 = @ = 
-nx0.0092, n = 1,2, ..., 5 ;  (b )  8 = x ,  $ = -nx0.016. 

For small p then, the velocity of the particles deviates only slightly from the mixture 
velocity. It follows from (4.181, (4.20) and (4.1) that  for large h 

which implies that the convection of particles decreases as h increases, and this is 
clearly indicated in figure 5. 

Consider next a container with an inner cylinder, in which case a core of clear fluid, 
C, is formed as the particles move away from the interior boundary (see figure 6). If 
in addition the azimuthal component of the relative velocity is accounted for, i.e. 
p+O, particles also move away from the front wall at f? = 0. The clear fluid produced 
there is assumed to be transported radially inwards in a quasi-steady boundary layer 
in which the mass flux of particles is negligible (Schaflinger et al. 1986). This implies 
the condition 

(5.7) q D - n  = 0 a t  ah', = { r :  f? = 0, R ( O , t )  < r < 1) 
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FIGURE 5. Particle velocities indicated with arrows on the streamlines of the mixture velocity : 
t = 0.5, a, = 0.1, != 0.01; (a )  h = 0.1, ( b )  h = 10.0. 

I 

Nb, I )  

FIGURE 6. Geometry and notation. 

(Schneider 1982), or by (2.3a),  

The boundary conditions to zeroth order can be expressed in terms of Po and q 5 O .  At 
the clear-fluid boundary, the stream function in the clear fluid Po is constant and we 

(5.9) 
take 

Po = O  at aC. 
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Since the pressure P is continuous to lowest order at  r = R(O,t), i t  follows from the 
definition (4.13) that in the suspension 

(5.10) $O = -ao(Ro(O, t))2/2 at CISs = { r :  r = 1, r :  0 = 0, R(0, t )  < r < l}, 

and 
(l-rz)(l-ao)(130)z 

at as,. 
2[1 + ( B y ]  

$0 = -"O(RO(O, t))"2 - (5.11) 

In addition to these boundary conditions the shock conditions at  the position of 
the interface between clear fluid and suspension have to be considered. To zeroth 
order (2.14a-c), (2.15a, b)  imply 

( 5 . 1 2 ~ )  

at r = RO(8, t ) .  (5 .12b)  

[PO]' = 0, 

(5.12 c )  

The motion of the interface is governed by (5 .12~)  and is thus coupled to the flow 
field. Although the force balance is not purely hydrostatic, the shape of the interface 
(to zeroth order) is still a concentric circle. To establish this note that at  any position 8 

1: J:i j,drdz - 0, 

so that, in particular, 

Manipulation of (4.12) and (4.13), and (5.14) yields 

q:dr = 0. 

(5.13) 

(5.14) 

(Po)--Po((r = ri)+$O(r = I)-($O)+ = 0, (5.15) 

and (@)+ = (PO))'- aO(RO(8, t))2/2, (5.16) 

whereas the boundary conditions (5.9) and (5.10), and (5.15) imply that 

[PO]+ = aO[(RO(B, t ) ) Z -  (RO(0, t))"/2. (5.17) 

But according to ( 5 . 1 2 ~ )  the pressure is continuous across the interface which means 
that 

Rye,  t )  = RO(0, t ) ,  (5.18) 

i.e. the shape of the interface is independent of 0 to zeroth order. Since n: = e,, it 
follows from (5 .12~)  that 

i3Ro 1 AoRo 
1 + (Bo)2 ' 

- = - (q;)++(l-ao) 
at P 

(5.19) 

As the last term in (5.19) is a function o f t  only (a,")', must also be a function only 
oft  if (5.18) is to be fulfilled. In other words, the radial velocity is independent of 8 
at the position of the shock. This result makes it possible to solve for the flow in the 
two regions (clear fluid and suspension) separately, with the shock position appearing 
only as a new circular boundary. At  the interface then 
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which is valid on both sides of the interface because the radial velocity component 
is continuous at  the shock. The function f ( t )  must be determined from global 
continuity requirements. In  terms of $ O ,  the preceding equation can be expressed 
as 

p(RO( t ) ,  0, t )  = - a o ( ~ o ( t ) ) 2 / 2 - 2 ~ 0 ( t ) f ( t )  e. (5.21) 

Continuity requires that in the suspension a t  6 = 0, (5.21) be identical to (5.11) at  
r = Ro( t )  and this imDlies 

(5.22) 

The pressure a t  the interface is given by 

Po(Ro(t), 6, t )  = -2R0(t) f ( t )  6, (5.23) 

and because there is a pure fluid jet, Po is not continuous a t  (Ro(t) ,  0) since (5.9) holds 
a t  aC. The clear fluid coming from the boundary layer a t  a S D  is assumed to be 
distributed into the clear-fluid region in form of a point source. The locus of the 
interface is obtained then from (5.19), (5.20) and (5.22) : 

(5.24) 
d(RO)' (1 - (RO)') (BO)' + 2(R0)' (1  -ao) A' -- - 

dt a@@[ 1 + (B0)2] 1 +(Boy ' 

which is equivalent to the result obtained by Schaflinger et al. (1986). 
Let $' = $+a0(R0)2/2 so that:  

Vzq5'= 2w0 in S, ( 5 . 2 5 ~ )  

$ ' = O  on as,, (5.25b) 

(1  - r 2 )  (1 --oro) (BO)' 
$' = - on as,, 

2[1+ (B0)2] 
( 5 . 2 5 ~ )  

(5.25d) 

The velocity is given by 
qo = k x V$f/2 (5.26) 

and the time appears only as a parameter. It is convenient to represent the function 
4' as a linear combination of $w and $p, 

(1--or*) (B"t))2 
2[1+ (BO(t))2] +P 

$' = 2wO(t) (bW+ 

where V2q5w= 1 in S, 

4 , = 0  on as, 
V2$,=Q in S ,  

$ p = - ( 1 - ~ 2 )  on as,, 

on as,. 

(5.27) 

(5.28a) 

(5.28b) 

(5.29 a) 

(5.29b) 

( 5 . 2 9 ~ )  
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FIGURE 7. Streamlines in the mixture in the case of an inner interface with Ro = 0.2: (a) Rotational 
part of the flow field, $ = -n  x 0.026, n = 1,2, ..., 5. ( b )  Irrotational part of the flow field, $ = 
- m  x 0.16. 

In this representation 4" is the part of the flow field that is set up by the generated 
vorticity, whereas $p is due to  the suction of clear fluid a t  the front wall. Streamlines 
for the solution of (5.28) and (5.29) are shown separately in figures 7 ( a )  and ( b )  for 
the case 8 = rc, Ro = 0.2. (Details of the method of solution can be found in Appendix 
B.) To determine the total flow field these solutions are superposed with relative 
magnitudes that are given by the time-dependent functions in (5.27). Since ui and p 
are often rather small in applications, typically ai = 0.1, ,13 = 0.01 or even less, it is 
interesting to estimate the relative importance of the two contributions to the flow 
field in practical cases. Since B" - /3 from (2.8) and w0 - ai by (4.16) the ratio 

A = P2/ai, (5.30) 

measures the relative magnitude of the flow set up by #@which is very small in many 
applications. However, for h % 1 ,  wo - ui/h by (4.20) so that 

A ,  = P2h/ai, (5.31) 
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is a more accurate estimate indicating a more pronounced influence. (In this 
connection, i t  should be pointed out that the flow set up by q5@ does not possess any 
vorticity, and it is not damped by vortex stretching since the corresponding Ekman 
layers are non-divergent.) 

No vorticity is generated in the clear fluid because there are no settling particles, 
and hence no generating mechanism. However, vorticity is convected along 
streamlines and since according to (5.19) the shock moves faster than the fluid itself, 
non-zero vorticity generated in the suspension is left behind the shock in the clear 
fluid as it moves outwards. In  contrast to the situation in the suspension, the 
vorticity that appears in the clear fluid is not uniformly distributed because its 
magnitude crossing the shock is time dependent and in addition there is a decay due 
to spin-down processes. Therefore (5.1) and (4.16) cannot be solved separately as was 
the case in the suspension region, but a single equation for Po is obtained from (5.1), 
(4.12), (4.16) and (4.17): 

1 
(5.32) 

a - vP+- (k x V P ~ ) . V ( V ~ P ~ ) + ~ ~ [ D ( ~ ~ ) ~ ~ V ~ P ~  = o in C. 
at 2P 

The boundary conditions are = on ac, 

and from the 0-component of (5.12b) 

( 5 . 3 3 ~ )  

(5.33b) 

(5.33c) 

where q 5 O  is the solution in the suspension region. The last boundary condition, which 
was not required earlier, is necessary here because the governing equation is of higher 
order than that in the suspension. 

Some additional remarks should be made regarding the boundary condition 
( 5 . 3 3 ~ ) .  This condition suggests a jump of the 0-component of the velocity across the 
shock, the magnitude of which is given by the last term in (5 .33~) .  This term is a 
time-dependent function only and thus non-zero along the whole shock surface. At 
t9 = 0 though, the radial wall prevents motions in the $-direction on both sides of the 
shock, and ( 5 . 3 3 ~ )  obviously cannot hold there. However, the magnitude of the 
velocity jump a t  the shock, - at A ,  is of the same order as the error made when 
neglecting the sediment, which coats the wall of the container a t  8 = 0 as well as at 
r = 1. Therefore, the velocity jump at the shock must be dealt with in conjunction 
with a study of the sediment layer. Such a boundary-layer analysis would give the 
appropriate boundary conditions for the flow outside the sediment layer. The shock 
condition ( 5 . 3 3 ~ )  must then match these conditions rather than the condition at the 
wall. If, for example, the sediment is assumed to be transported away in a similar 
way as the clear fluid a t  8 = 0, or the accumulation is of no consequence, the 
corresponding condition in the suspension at 8 = 0 would be qc-e, = 0. This implies 
that in the suspension 

whereas in the clear fluid we still have qO-e, = 0 a t  0 = 0. Thus the velocity jump a t  
the shock at T = Ro(t) is in this case possible due to the suction of particles into the 
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Front wall 1 Kinematic shock 

FIGURE 8. Streamlines in the mixture and in the clear fluid: t = 0.7, ai = 0.1, p = 0.01, A = 25. 
Mixture: q5' = -0.11 x 1 0 - 3 + n x 0 . 0 2 6 ~  n = 0,1,  ..., 8. Clear fluid: Po = -0.11 x 
n x 0 . 0 2 6 ~  n = 0, 1, ..., 4. 

sediment layer in the suspension region. If, on the contrary, the sediment 
accumulation is significant, (5.34) does not hold and a more detailed study of the 
sediment layer is needed to  formulate the proper boundary condition. This issue is 
not pursued further here though and ( 5 . 3 3 ~ )  is approximated by 

(5.35) 

The problem for the clear fluid is nonlinear and must be solved by numerical 
methods. However, an approximate analytical solution can be found for large values 
of the parameter h for which the spin-up time is very small compared with the 
separation time. The vorticity that appears in the clear fluid is then damped out on 
a very short timescale. By neglecting all terms but the last in (5.32), the problem 
reduces to the same linear form as in the suspension, but now the vorticity is zero in 
the whole region. The vorticity which crosses the shock decays to zero almost 
immediately, that is within an inertial boundary layer of thickness 6 - 1 / A .  A study 
of this boundary layer is necessary in order to satisfy the last condition (5.35), which 
cannot be satisfied by the outer solution presented here. (This will be reported on 
elsewhere.) We can now obtain a solution for the whole of the container in the case 
of large h with the approximations already cited. Streamlines are shown in figure 8 
a t  a time when the interface is approximately midway between the axis of rotation 
and the outer wall of the cylinder. The flow field has been calculated using the 
formula 

CL." = ai e-zt, (5.36) 

which is an approximation for dilute suspensions. 

6. Conclusions 
Batch separation of a two-phase mixture contained in a rotating sectioned cylinder 

of finite height has been considered. The two-phase flow equations have been solved 
under the assumption that the Ekman number and the relative density difference are 
small. 

During separation, a bulk mass element in the mixture expands in the horizontal 
plane as the heavier phase is spread out by the centrifugal acceleration. To maintain 
its angular momentum, the mass element, which initially rotates with the container, 



The flow of a rotating mixture in a sectioned cylinder 173 

acquires a relative rotation in the opposite direction. This is equivalent to a Locally 
generated, negative relative vorticity in the mixture. For a non-stratified mixture a t  
small Rossby number the expansion rate is spatially uniform so that only a time- 
dependent vorticity is generated. At the same time, the stretching of vortex lines due 
to the divergent Ekman layers at the endwalls counteracts the expansion of the mass 
elements, which has a damping effect on the generated vorticity. Diffusion of 
momentum caused by the sedimenting particles also reduces the vorticity that is 
generated in the mixture. In summary, this extends the result for the mixture 
vorticity in a circular cylinder, found by Ungarish (1986) to be valid for a cylinder 
with arbitrary cross-section. 

The concentration remains approximately homogeneous for small Rossby numbers 
even in a non-axisymmetric cylinder. The first-order correction to the concentration 
for non-zero Rossby numbers results from the Coriolis force in the bulk which 
decreases the expansion rate of the particle cloud. The negative effect of the Coriolis 
force on the separation rate for increasing Rossby numbers thus persists even in a 
non-axisymmetric container. 

The generated non-axisymmetric flow field in the mixture is approximately 
geostrophic and can be seen as a superposition of two parts. One part is due to the 
generated vorticity in the mixture and consists of a circulating motion opposite to 
the rotation of the container. The second part is caused by suction of clear fluid at 
the front wall. This fluid is redistributed into the clear-fluid region via a thin 
boundary layer. The importance of this part of the flow field is governed by the 
particle Taylor number and decreases the time for total separation according to the 
result found by Schaflinger et al. (1986). 

The interface separating the regions of clear fluid and mixture is found to be 
approximately circular and is not influenced by the flow field to zeroth order in the 
Rossby number. 

The perturbation technique used here has also been applied to separation in 
containers without closed geostrophic contours, in which the endwalls are slightly 
inclined. This investigation will be reported upon separately. 

This research was partially supported by the National Science Foundation, Grant 
number 8519764-DMS. 

Appendix A. Solution for the stream function in a circle sector 

the case 0 = in, it follows that 
An analytical solution to (5.4) can be found using the Green function method. For 

I @r(r,8) = -+- r2 { R-2artan [ ~ 1 :t tan (o)] - 2 artan [ 
4 47c 

tan (in - 0) 

sin (20) -3." sin (28) log -+ 1 -- cos2 (20) +- log [(r4+ 1)2-4r4 cos* (28)] [(: J ,"4 ] 2r2 

r2 + cos (20) 1 r2 - cos (20) -9 (artan [ sin (20) ] -2 artan [-] tan (28) - artan [ sin (28) 1) 
+r2 cos (28) artan 

1/r2+cos(20)] -2artan [ ~ 1 ] ( [ sin(28) tan (26') 
l /r2 - cos (20)])} [ sin(28) 

- artan 
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For the case 0 = x ,  
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1 r2+1-2r  cos(8) 
r 2 + 1 + 2 r  cos(8) 

(A 2) 
r+cos(8) r - cos (8) + CoSo r2 (artan [ sin (8) ] + artan [ sin (e) I)}. 

Appendix B. The Green function for a semi-annulus 
Equations (5.28) and (5.29) constitute a problem of the type 

Vq5 = O  in S; q5 = f ( r , 8 )  on 3s. (B 1) 

A Green function to  the domain 

S = ( r : a , < r , <  1, 8 : O G O G n )  

is found from an infinite set of mirror images of a point in S. In complex form the 
Green function can be written 

(B 2) 

(B 3) 
a, 

where B(w) is defined by 

B(w) = z ( - l ) n a n Z + n  Wn.  
n-0 

Here, an overbar denotes the complex conjugate. The solution to (B 1)  is then given 

where +z is the unit normal to as in the complex plane. Solutions for other values of 
0 than x can be found by conformal mapping. 

REFERENCES 

AMBERG, G., DAHLKILD, A. A.,  BARK, F. H. & HENNINGSON, D. S. 1986 On time-dependent 

AMBERG, G. & GREENSPAN, H. P. 1987 Boundary layers in a sectioned centrifuge. J. Fluid Mech. 

GREENSPAN, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press. 
GREENSPAN, H.  P. 1983 On centrifugal separation of a mixture. J. Fluid Mech. 127, 91-101. 
GREENSPAN, H. P. 1988 On the vorticity of a rotating mixture. J. Fluid Mech. 191, 517-528. 
GREENSPAN, H. P. & UNQARISH, M. 1985a On the enhancement of centrifugal separation. J. Fluid 

GREENSPAN, H. P. & UNOARISH, M. 1985b On the centrifugal separation of a bulk mixture. Intt 

settling of a dilute suspension in a rotating conical channel. J. Fluid Mech. 166, 473-502. 

181, 77-97. 

Mech. 157, 359-373. 

J .  Multiphase Flow 11, 825-836. 



The $ow of a rotating mixture in a sectioned cylinder 175 

ISHII, M. 1975 Therrno-Fluid Dynamic Theory of Two-Phase Flow. Paris : Eyrolles. 
KYNCH, G. J.  1952 A theory of sedimentation. Trans. Faraday Soc. 48, 16G176. 
SCHAFLINGER, U., KOPPL, A. & FILIPCZAK, G. 1986 Sedimentation in cylindrical centrifuges with 

compartments. Ing. Arch. 56, 321. 
SCHNEIDER, W. 1982 Kinematic-wave theory of sedimentation beneath inclined walls. f. Fluid 

Mech. 120, 323-346. 
UNGARISH, M. 1986 Flow of a separating mixture in a rotating cylinder. Phys. Fluids 29, 

640-646. 
UNQARISH, M. 1988 Two-fluid analysis of centrifugal separation in a finite cylinder. Intl J .  

Multiphase Flow (to appear). 




